Tetrahedron Letters Vol. 21, pp 3621 - 3624 © Pergamon Press Ltd. 1980. Printed in Great Britain

ETHYL 4-DIPHENYLPHOSPHINOYL-2-OXOBUTANOATE: A CONVENIENT REAGENT FOR THE SYNTHESIS OF $\gamma_1\delta$ -UNSATURATED β -KETOESTERS

J.A.M. van den Goorbergh and A. van der Gen^X Gorlaeus Laboratories, Department of Organic Chemistry, University of Leiden P.O.Box 9502, 2300 RA Leiden, The Netherlands.

<u>Summary</u>: Aldehydes and ketones can be converted into γ , δ -unsaturated- β -ketoesters by reaction with the diamion from phosphine oxide 1.

 γ , δ -unsaturated- β -ketoesters are highly valued intermediates in organic synthesis. Their multifunctionality allows numerous further transformations. Several of these, e.g.: the Robinson annelation of cycloalkanones¹ or the corresponding enamines,² the formation of 4-piperidones by the Mannich reaction³ and Diels-Alder reactions of the enol-acetates⁴ have received considerable interest in recent years while others, such as decarbalkoxylations and reactions via the mono- and dianions, appear not to have been explored.

Wider application of γ , δ -unsaturated- β -ketoesters has been greatly hampered by their limited accessibility. The methods described until recently were not generally applicable, suffered from low yields or used difficultly accessible starting materials.⁵ The condensation of carbonyl compounds with the dianion of the acetoacetic ester, described by Huckin and Weiler,⁶ appeared to be more general, but no satisfactory method for the dehydration of the resulting alcohols has been described. The recent report by Bodalski et al.⁷ on the synthesis of these unsaturated esters by the Wittig-Horner-Emmons approach, using diethyl 3-carbethoxy-2--oxopropane phosphonate prompts us to disclose our own results, which make use of a Horner--Wittig reaction with the dianion from phosphine oxide 1.

This phosphine oxide is easily available by an Arbusov reaction of ethyl 4-bromo-3-oxobutanoate⁸ with ethyl diphenylphosphinite.

Apart from the desired phosphine oxide $\underline{1}$ a certain amount of vinyl phosphinate $\underline{2}$ is formed (Perkow reaction) but one crystallization (toluene/ether/ hexane) suffices to obtain the phosphine oxide in excellent purity mp 95°).⁹

<u>1</u> (3 mmol in 20 ml of THF/HMPT 3:1 v/v) reacts with 2 equiv of sodium hydride in THF (10 ml) to give the yellow coloured dianionic species <u>3</u>. Addition of HMPT is necessary to all complete conversion into the dianion.

Dianion $\underline{3}$ reacts smoothly with a large variety of aldehydes and ketones (3 mmol in 20 ml of THF) at room temperature. The resulting betaines $\underline{4}$ loose diphenylphosphinate spontaneously to afford the unsaturated ketoesters $\underline{5}$ in high yields. The results are presented in the Table. The compounds marked with an asterisk were also obtained by Bodalski et al.⁷ in comparable yields.

Similar to what is observed in the reactions with the phosphonate reagent,⁷ the products <u>5</u> derived from aldehydes (R^2 = H) are exclusively formed as E-isomers.¹¹ This indicates reversibility of the initial condensation step and exclusive elimination of diphenylphosphina1 from the thermodynamically favoured three isomer of 4.¹²

With non-symmetric ketones, both E-and Z-isomers are formed, although a large preponderance of E-isomer is observed in all cases (entries J,L and O). Acyclic ketones gave quite satisfactory results (entries I,J and O). Cyclohexanones reacted smoothly and provided the previously unknown derivates (entries K through N) in excellent yields. These compounds show obvious potential for the synthesis of spiro compounds. Also the simplest member of the family, the "Nazarov reagent", 1^{a} is accessible by reaction of <u>1</u> with (para)formaldehyde (entry A). Although the yield in this case is lower (52 %), this provides a convenient route to this important reagent. In contrast with the preceeding examples, cyclopentanone, reported to give a 65 % yield, ⁷ gave less satisfactory results with our method.¹³

As expected, the position of the keto-enol equilibria in which compounds 5 engage, show a strong solvent dependency. The ratios given in the table have been determined in deuterochloroform solution by NMR-analysis.

Preliminary experiments indicate that the unsaturated ketoesters 5/can be alkylated at the α -, γ - or ε -position, depending on the reaction conditions.

	Product	Yield ^a	$n_{\rm D}^{20}$ / mp	E/Z ratio	keto/enol ratio
Α.	st.	52 %	n _D 1,4788		50/50
в. [*]		81 %	n _D 1,4512		75/25
с.	n-C ₇ H ₁₅	73 %	n _D 1,4638		75/25
	O C				
D.*	X X=H	90 %	mp 53°		60/40
Е.	X=CH ₃	80 %	mp 52 ⁰		70/30
F.	X=OCH ₃	80 %	mp 48 ⁰		75/25
G.	x=no ₂	81 %	mp 108°		35/65
н.	x=n(CH ₃) ₂	84 %	mp 84 ⁰		85/15
1.*		72 %	n _D 1,4676		95/5
J.		65 %	n _D 1,4655	85/15	90 /10
K.		85 %	n _D 1,4980		95/5
L.	- il on	63 %	n _D 1,4980	85/15	95/5
м.	the second	89 %	n _D 1,4898		95/5
N.	(hilon	73 %	ⁿ D ^{1,5274}		90 /10
0.*	Otton	65 %	n _D 1,5632	90/10	80/20

Table: Conversion of carbonyl compounds R^1R^2C0 into γ, δ -unsaturated β -ketoesters $\underline{5}$.

a) Yields refer to isolated products after short-column chromatography.

REFERENCES AND NOTES

- 1. a. I.N. Nazarov and S.I. Zavyalov, Zh.Obshch.Khim. 23, 1703 (1953).
 - b. E. Wenkert, A. Afonso, J.B son Bredenberg, C. Kaneko and A. Tahara, J.Am.Chem.Soc. <u>86</u> 2038 (1964).
 - c. D.J. Collins and C.W. Tomkins, Aust.J.Chem. 30, 433 (1977).
 - d. Phaik Eng Sum, J.Chem.Soc.Chem.Commun. 91 (1977).
- 2. a. G. Stork and R.N. Guthikonda, J.Am.Chem.Soc. <u>94</u>, 5109 (1972).
 - b. Tetsuji Kametani et al., Chem.Pharm.Bull. 23, 2634 (1975).
 - c. W.M.B. Könst, J.G. Witteveen and H. Boelens, Tetrahedron 32, 1415 (1976).
- 3. K. Hohenlohe-Oehringen, Monatsh.Chem. 93, 576 (1962).
- 4. a. G. Kresze and H.Härtner, Liebigs Ann.Chem. 650 (1973).
 - b. G. Kresze, M. Morbev and A. Bijev, Tetrahedron Lett., 2259 (1977).
- 5. a. F. Pochat and E. Levas, Bull.Soc.Chim.Fr. 3151 (1972).
 - b. H.J. Bestmann and R.W. Saalfrank, Chem.Ber. 109, 403 (1976).
 - c. P. Pollet and S. Gelin, Synthesis 142 (1978).
 - d. H.B. Henbest and E.R.M. Jones, J.Chem.Soc. 3628 (1950).
 - e. J.F. Wolfe, T.M. Harris and C.R. Hauser, J.Org.Chem. 29, 3249 (1964).
 - f. G. Stork and R.N. Guthikonda, Tetrahedron Lett., 2755 (1972).
 - g. L. Pichat and J.P. Beaucourt, Synthesis 537 (1973).
 - h. J.E. Ellis, J.S. Dutcher and C.H. Heathcock, Synth.Commun. 4, 71 (1974).
 - i. B.M. Trost and R.A. Kunz, J.Org.Chem. 39, 2648 (1974).
 - j. R. Couffignal and J.L. Moreau, J.Organomet.Chem. 127, C65 (1977).
- 6. a. S.N. Huckin and L. Weiler, Tetrahedron Lett. 4835 (1971).
 - b. S.N. Huckin and L. Weiler, Can.J.Chem. <u>52</u>, 2157 (1974).
- 7. R. Bodalski, K.M. Pietrusiewicz, J. Monkiewicz and J. Koszuk, Tetrahedron Lett. 2287 (19
- 8. A. Svendson and P.M. Boll, Tetrahedron 29, 4251 (1973).
- 9. A similar phenomenon has been described for the reaction of ethyl 4-bromo-2-oxobutanoate with triethylphosphite.¹⁰ In that case however the Perkow product is predominantly forme
- 10. V. Jagodić, Croat.Chem.Acta 49, 490 (1977).
- 11. Note that dehydratation of the condensation products obtained by Huckin and Weiler⁶ affords mixtures of E- and Z-isomers.
- 12. M. Schlosser, Topics in Stereochemistry 5, 1 (1970).
- 13. Under the conditions used, part of the starting material is converted into condensation products that contaminate the reaction product.

(Received in UK 11 June 1980)